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ABSTRACT

Some applications, such as Message Authentication Code (MAC), rely on different hashing 
operations. There are various hash functions, including Message-Digest 5 (MD5), RACE 
Integrity Primitives Evaluation Message Digest 160 (RIPEMD-160), Secure Hash Algorithm 
1 (SHA-1), and Secure Hash Algorithm 256 (SHA-256), among others. The network layer is 
the third of seven layers of the Open Systems Interconnection (OSI) concept, also known as 
the Internet. It handles network addressing and physical data routing. Nowadays, enhanced 
internet security is necessary to safeguard networks from illegal surveillance. As a result, 
Internet Protocol Security (IPsec) introduces secure communication across the Internet by 
encrypting and/or authenticating network traffic at the IP level. IPsec is an internet-based 
security protocol. Encapsulating Security Payload (ESP) and Authentication Header (AH) 
protocols are separated into two protocols. The MAC value is stored in the authentication 
data files of the Authentication Header and Encapsulating Security Payload. This article 
analyses a fast implementation of the Hash-based Message Authentication Code (HMAC), 
which uses its algorithm to ensure the validity and integrity of data to optimise hardware 
efficiency and design efficacy using the SHA-256 algorithm. During data transfer, HMAC 

is critical for message authentication. It 
was successfully developed using Verilog 
Hardware Description Language (HDL) 
code with the implementation of a Field 
Programmable Gate Array (FPGA) device 
using the Altera Quartus II Computer-Aided 
Design (CAD) tool to enhance the maximum 
frequency of the design. The accuracy of the 
HMAC design, which is based on the SHA-
256 design, was examined and confirmed 
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using ModelSim. The results indicate that the maximum frequency of the HMAC-SHA-256 
design is approximately 195.16 MHz.

Keywords: Field Programmable Gate Array, hash function, Hash-based Message Authentication Code, Secure 
Hash Algorithm 256, Verilog Hardware Description Language

INTRODUCTION

There are seven layers, and the internet layer is the network layer in which data transfer from 
one terminal to another depends on the address and routing network. Traffic networks are 
prone to eavesdropping and illegal access without a network-integrated security element. 
However, selecting a suitable encryption and authentication product for the network can 
solve this problem. The internet community created the Security Protocol (Randall, 1999). 
The third network layer of the seven-layer OSI architecture employs the IPsec protocol. 
The seven layers are divided into application, presentation, session, transport, network, data 
link, and physical layers. One of the network encryption protocols is IPsec (IP Security), 
the most recent IP-based technology.

The IP provides network authentication and encryption to protect the network from 
illegal surveillance. Because of its improved capabilities, IP Security has become a fact 
of life in terms of network security for Internet Protocol version 4 (IPv4) and Internet 
Protocol version 6 (IPv6). The IPsec is divided into two protocols: Authentication Header 
(AH), which examines IP packet authentication and data integrity, and Encapsulating 
Security Payload (ESP), which encrypts and authenticates the message. Both AH and 
ESP are equipped with two different modes: tunnel mode and transit mode; as a whole, 
the IP packet is encrypted in tunnel mode, while only the transport layer is encrypted in 
the latter. On the other hand, HMAC-MD5, HMAC-SHA, and HMAC-RIPEMD160 are 
authentication and data integrity methods. These methods may be used to safeguard all 
distributed applications, e-mail, file transfers, and web access. 

This article focuses on computing the Hash-based Message Authentication 
Code (HMAC) using the MAC (Message Authentication Code) algorithm. Message 
Authentication Code (MAC) is used to verify the validity of a message, while HMAC 
is a subset of MAC that uses a cryptographic hash function and a private key for 
verification. It accepts arbitrary input with a specified key and produces MAC output. 
The authentication data element in the AH header contains this MAC value. Network 
transmission operations are followed using the same key to obtain the same MAC at the 
destination. The message is valid if the MAC value received at the destination corresponds 
to the one broadcasted. Similar to AH, ESP enables the use of MAC with HMAC. The 
encryption procedure takes place before the IP layer, which is at the IPsec layer when the 
application sends the message across the network. A message is routed via the network 
to its destination using an IP address, part of an IP layer. The router will then determine 
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the destination address based on the sender’s IP address. The decryption of the packet 
is required to access the sent data.

Security has recently emerged as a hot topic among researchers. Various cryptography 
algorithms have been developed to enhance the effectiveness of these information-
protecting processes. Message digests are generated using hash function techniques during 
data transmission. As a result, it becomes a crucial tool for embedding security in e-mail, 
Internet banking, and other applications. A hash function generates a fixed-length output 
from an arbitrary-length message input. The one-way nature of hash functions makes 
converting a hash value to a message input challenging. A hash function is a cryptography 
technique that does not require a key, such as MD5, RIPEMD160, or SHA-1. In this study, 
an SHA family was constructed and tailored to meet the performance requirements for 
cryptographic algorithms. There are four types of hash functions in SHA-2, which are 
SHA-224, SHA-256, SHA-384, and SHA-512. The length of SHA determines the output 
length of these hash algorithms, ranging from 256 to 512 bits. This article presents the 
design of the SHA-256 hash function.

This study optimises hardware resources and performance by utilising the hash function 
of SHA-256 with a Message Authentication Code. Meanwhile, IPsec and HMAC-SHA-256 
are focused on several related projects to optimise hardware size, performance, and 
consumption. McLoone and McCanny (2002) presented IPsec hardware on a single chip 
that included Rijndael and HMAC-SHA-256. The wireless design raises the maximum 
frequency, as shown in a previous study (Selimis et al., 2003). On the other hand, the 
HMAC with SHA-1/MD5 was initially presented in earlier research (Wang et al., 2004), 
where hardware complexity was minimised, and an efficient hash function structure was 
devised to share hardware. Additionally, Michail et al. (2004) demonstrated the HMAC-
SHA-1 implementation on an FPGA device, whereas Yiakoumis et al. (2005) showed the 
execution of a small-sized, high-speed HMAC-SHA-1.

Improvement methods adopted by Khan et al. (2007) used pipelining and parallelism 
to create the HMAC-hash unit and combine them into a single reconfigurable unit. Even 
though these ideas worked well, the greatest frequencies they could reach were only a 
few tens of MHz, or up to 111 MHz, as presented in research by Yiakoumis et al. (2005). 
Meanwhile, an FPGA implementation of HMAC based on SHA-256 was designed in 
previous studies by Juliato and Gebotys (2011) and Rubayya and Resmi (2015). The results 
were obtained using a Xilinx device in both designs. Furthermore, the HMAC design in 
Rubayya and Resmi (2015) demonstrated significant improvement. It suggests that greater 
performance is needed to meet the demands of current systems. 

Table 1 shows the previous design of HMAC with various types of hash functions, such 
as SHA-1, MD5, and RIPEMD-160. Numerous studies have been conducted on HMAC, but 
not all of them have focused on the frequency maximum of FPGA design implementation 
(Choi & Seo, 2020; Oku et al., 2018; Lin et al., 2017; Ravilla & Putta, 2015a; Ravilla & 
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Table 1
Previous HMAC design

No. Author FPGA Device HMAC Design
Frequency 
Maximum 
(MHz)

1 McLoone and McCanny (2002) Xilinx XCV1000E HMAC (SHA-1) 50
2 Selimis et al. (2003) V150bg352 HMAC (SHA-1) 82
3 Wang et al. (2004) EP2OKIOOOEBC652-IX HMAC (SHA-1/MD5) 22.67
4 Michail et al. (2004) Xilinx V3200efg1156 HMAC (SHA-1) 62.0
5 Yiakoumis et al. (2005) Xilinx VirtexE-8 HMAC (MD5)

HMAC (SHA-1)
55
111

6 Khan et al. (2007) Xilinx XC2V4000 HMAC (MD5, SHA-1, 
RIPEMD-160)

43.47

8 Juliato and Gebotys (2011) Altera Apex 20K, 
EP20K1000EBC652

HMAC (SHA-256) 35.55

Juliato and Gebotys (2011) Xilinx Virtex-E, 
XCV1600EBG1156

HMAC (SHA-256) 48.12

Juliato and Gebotys (2011) Xilinx Virtex-II, 
XCV2V4000BF957

HMAC (SHA-256) 59.66

9 Rubayya and Resmi (2015) Xilinx Device (no mention 
device name)

HMAC (SHA-256) 110.009

10 Ravilla and Putta (2015a, 
2015b)

No FPGA implementation HMAC (SHA-256) -

11 Choi and Seo (2020) No FPGA implementation HMAC (SHA-256) -
12 Chen and Yuan (2012) No FPGA implementation HMAC (SHA-256) -
13 Lin et al. (2017) No FPGA implementation HMAC (SHA-256) -

14 Oku et al. (2018) No FPGA implementation HMAC (SHA-256) -

15 Jung and Jung (2013) No FPGA implementation HMAC-based RFID 
mutual authentication

-

16 Kieu-Do-Nguyen et al. (2022) Virtex 4/virtex 5 HMAC-SHA-256 188
17 Pham et al. (2022) Virtex2 XC2VP20 SHA-256 165

Putta, 2015b; Jung & Jung, 2013). The reference study by Kieu-Do-Nguyen et al. (2022) 
combined all SHA-2 families into one core, such as HMAC-SHA2-224/256/384/512, 
whereas Pham et al. (2022) designed only the combination of SHA-256/512/256d hash 
function. This article focuses on SHA-256 because of its wide implementation in security 
design implementations, such as Bitcoin, also known as cryptocurrency. 

MATERIALS AND METHODS

Message authentication is the process of verifying the authenticity of messages, where 
two important factors must be considered in verifying the authenticity of a message, such 
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as a source and that the message has not been altered. The traditional encryption method 
authentication takes place when the sender and the receiver possess the same key throughout 
the transmission process (Stallings, 1996). In other words, only the genuine user has the 
key to decrypt the message. Figure 1 shows the block design for the complete message 
authentication process, which contains a secret key to generate data into the algorithm. 
The sender receives this message and its MAC; once the MAC has been compared to the 
MAC at the receiver, the receiver must determine whether it has received the same MAC 
using the same secret key. The message has not been changed and is deemed authentic if 
the output MAC matches the one transmitted.

Figure 1. Message authentication using HMAC
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One application that uses the hash function to verify message authentication is HMAC. 
An HMAC based on SHA-256 was implemented in this study. The input key is first hashed 
before any input text using HMAC. The input key is generated by XORing the inner pad 
(Ipad) with the input text. An inner pad value is 36 hexadecimal values with a 64-byte 
timeout, depending on the length of the key. The output of this SHA-256 hash function 
will be fed into the next SHA-256 to produce the HMAC design output. Before hashing 
the first SHA-256 output, the key inputs must be XORed with the outer pad (Opad), which 
has 5C values in hexadecimal (FIPS PUB 198-1, 2008; FIPS PUB 180-4, 2015). The 
concatenation of the 64-byte key, K0, and Opad outputs, as well as the output of the first 
SHA-256, will then be hashed together to produce the HMAC output. Equation 1 shows 
an MAC calculated with the HMAC function over a textual representation of the data, 
while Figure 2 depicts the HMAC structure using SHA-256. The symbols ⊕ and || stand 
for XOR and concatenation, respectively.

MAC(Message input)t = HMAC(K, Message input)t

H((K0 ⊕ Opad) || H((K0 ⊕ Ipad) || Message input))t    [1]

Message Authentication Code is one of the applications of the hash function. Figure 2 
depicts the high-level implementation of the HMAC design, comprising an input pad (Ipad) 
with a fixed 36 hexadecimal value and an output pad (Opad) with a fixed 5C hexadecimal 
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value. The values from the Ipad are sent into the initial SHA-256 design. The counter then 
causes the HMAC count to generate the output of the first SHA-256 to the second SHA-256 
to obtain the overall HMAC output. HMAC is an abbreviation for Hash-based Message 
Authentication Code, a cryptographic authentication technique that uses a hash function 
and a secret key. Two identical hash function architectures are used in the HMAC design 
to obtain the HMAC results. Meanwhile, two hash functions must be used in the HMAC 
architecture to complete the HMAC structure. In this study, SHA-256 algorithms were 
employed in the HMAC design. Figure 3 depicts the architecture of an HMAC design with 
two SHA-256 hash algorithms.

Moreover, Figure 3 illustrates how the key Ipad input message was integrated with 
the text input. These values will be used as the SHA-256 hash function’s input message. 
There will be two instances of 512-bit blocks if the initialisation value and message input 
are used. The state machine controls the first and second SHA-256 input in the proposed 
design. As a result, the first SHA-256 must be executed first, and the second SHA-256 
must wait for the message input from the output of the first SHA-256 design, as shown 
in Figure 3. HMAC uses two hash functions to operate. Two SHA-256 hash functions are 
employed in HMAC design. The initial SHA-256 algorithm must be executed until results 
are achieved. These findings serve as the input for the second SHA-256 algorithm with 
message input. Figure 3 depicts the concatenation of a key with input from an Ipad and 
SHA-256 with input from a message. Therefore, the validity of the results of initial SHA-
256 remains crucial in acquiring the final HMAC based on SHA-256.

The 64 states in this design have generated the sequence input for the first and second 
SHA-256 algorithms. Thirty-two states were executed: 16 for the first 512 bits and another 

Figure 2. Illustration of HMAC construction
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16 for the second 512 bits SHA-256 to process the message for the first SHA-256. The 
message will use the output of the first 512-bit hash function to obtain the output of the 
second 512-bit loop of the input message. An HMAC count is used to generate the correct 
output SHA-256 hash function with the help of a counter. Input Ipad is the same concept 
as message input to the second SHA-256. The key Opad output will be combined with 
the first SHA-256 output. There will be two 512-bit blocks. The state begins at 33 and 
progresses to 48 for the first 512 bits. The remaining 512 bits will then be executed until 
64 states are reached. Similar to the previous SHA-256 process, the output of the second 
512-bit block of the second SHA-256 will use the output of the first 512 bits of the second 
hash function. Finally, this will produce the resulting output obtained in this study.

Secure Hash Functions authenticate messages; therefore, it is necessary to comply 
with the hash function requirement. A hash function must possess certain properties. 
Some of these properties include generating outputs of fixed length and the computational 
infeasibility of determining an x such that Hash(x) equals hash value. It is true for any given 
code h. It is easy to calculate the hash code, but it is impossible to recover the original 
message by reversing it. In addition, it is computationally impossible to determine y≠x for 
any given block x for which Hash(x) = Hash(y). In other words, identical hash codes are 
impossible to find, and all these characteristics constitute weak hash functions. Additionally, 

Figure 3. Implementation of proposed HMAC-SHA-256

clk rst

counter hash HMAC_count

KeyOpad || Output 1st SHA-256 (1024 bits)

HMAC output

SHA-256 Design

OpadIpad

Initialisation value

KeyIpad

KeyIpad || Message Text (1024 bits)

SHA-256 Design

key

Output 1st SHA-256

Initialisation value

Message Text KeyOpad



38 Pertanika J. Sci. & Technol. 32 (1): 31 - 44 (2024)

Shamsiah Suhaili, Norhuzaimin Julai, Rohana Sapawi and Nordiana Rajaee

no pair (x, y) can be found for which Hash(x) = hash value, computationally, (y). If the 
last property of the hash function criteria is met, the function is considered “strong.” Any 
message less than 264 bits in length can be entered into the SHA-256 algorithm. SHA-256 
processes 512-bit message inputs and 160-bit initial values to produce a 160-bit hash code 
output. Figure 4 depicts the 512-bit message input of the SHA-256 hash function.

Figure 4. 512-bit message input of SHA-256

1024 bits
64 bits

Message input 1000…0 Length of the message input

Several considerations must be made to 
generate output. The message must first be 
padded to almost exactly match 960 modulo 
1024. Figure 4 shows a 1-bit input following 
the input message. It is then padded with 
0 bits to produce the total length of the 
message. After the message is padded, 
64-bit inputs are added to the message. 
Message padding consists of 512 bits and 
the message’s total length. HMAC-based 
SHA-256 uses the SHA-256 approach to 

Table 2
Buffer initialisation of SHA-256

Register Buffer Initialisation (Hex)
A 32'h6a09e667
B 32'hbb67ae85
C 32'h3c6ef372
D 32'ha54ff53a
E 32'h510e527f
F 32'h9b05688c
G 32'h1f83d9ab
H 32'h5be0cd19

determine authentication in this design. In other words, the SHA-256 hash algorithm was 
utilised to construct HMAC. Based on the SHA-256 algorithm, the SHA-256 architecture 
has eight fixed inputs. Hence, the SHA-256 algorithm requires eight variables as initial 
input during hash computation. Table 2 displays the hexadecimal buffer initialisation of the 
SHA-256 hash function. Eight distinct input buffer initialisations exist; they are used during 
the first phase of execution, and their values are fixed for all SHA-256 hash functions. After 
the startup operation, the input message is processed in 1024-bit blocks of 32 bits each. 
Figure 5 displays the 64 highest-level steps of the SHA-256 message compression process.

The input message is padded during an early step of the SHA-256 hash process. Padding 
the message begins once the input for the message is received, and the message is completed 
by appending a single one-bit. Next, n zero bits will be added, and this pattern will continue 
until the total number of bits in the message equals 448 modulo 512. The final 64 bits are 
set aside specifically for use in relation to the calculation of how long the message should 
be. The message input capacity is 512 bits. The message scheduler computes the message, 
Wt of SHA-256. For 0 ≤ t ≤ 15, a message is extracted directly from the input message, 
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whereas for 16 ≤ t ≤ 63, a message Wt is calculated using Equation 2. The value t denotes 
the number of transformation rounds. ROTRn (x) is a right rotation of x by n bits, whereas 
SHRn (x) is a right shift of x by n bits, as shown in Equations 3 and 4.

Message schedule SHA-256, Wt 

Wt = message input     150 ≤≤ t

1615
256
072

256
1 )()( −−−− +++= ttttt WWWWW σσ   6316 ≤≤ t   [2]

where,

)()()()( 3187256
0 xSHRxROTRxROTRx ++=σ     [3]

)()()()( 101917256
1 xSHRxROTRxROTRx ++=σ     [4]

The SHA-256 compression function is made up of four functions that round from t 
= 0 to t = 63. The four functions are Ch(x,y,z), Maj(x,y,z), ∑0 )(),,,(),,,( xzyxMajzyxCh  and ∑1 )(x , as shown in 
Equations 5, 6, 7 and 8. The symbols ¬∧,  and⊕  represent the logical AND gate, NOT 
gate, and XOR gate, respectively.

( ) ( )gefegfeCh ∧¬⊕∧=),,(       [5]

Figure 5. Top level of SHA-256 design
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( ) ( ) )(),,( cbcabacbaMaj ∧⊕∧⊕∧=      [6]

)()()()( 22132
0

aROTRaROTRaROTRa ++=∑      [7]

)()()()( 25116
1

eROTReROTReROTRe ++=∑     [8]

The hash computation was used to construct eight variables with initial values to 
evaluate the four functions of Equations 5, 6, 7 and 8. The message input, Wt, and constant 
Kt form the 64 iterative operations. The output of the following Equations 9, 10 and 11 is 
the output of hash values.

∑ ++++=
11 ),,()( tt WKgfeChehTemp      [9]

∑ +=
02 ),,()( cbaMajaTemp        [10]

21

1

TempTempa
ab
bc
cd

Tempde
ef
fg
gh

+=
=
=
=

+=
=
=
=

       [11]

After 64 iterations, the modulo-32-bit adders calculate the hash values, H0 to H7. The 
SHA-256 hash value in its final form is generated using the Big-endian format.

33221100 ,,, HdHHcHHbHHaH +=+=+=+=

77665544 ,,, HhHHgHHfHHeH +=+=+=+=

Message Digest = 76543210 |||||||||||||| HHHHHHHH=  

RESULTS AND DISCUSSION

Figure 6 shows the timing simulation waveform result of the HMAC-SHA-256 design 
with the message input text “Sample #1”. HashCalc validated the HMAC values to ensure 
output accuracy. Based on the simulation waveform results, the output of the HMAC 
value provides the correct result of the HMAC value without error, which is similar to 
the calculation from HashCalc software, as shown in Figure 7. FMax is the maximum 
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clock frequency of HMAC-SHA-256 that a 
digital design can operate at, and it improves 
greatly when a clock constraint is applied to 
the design. Figure 8 depicts the maximum 
clock frequency of HMAC-SHA-256 with 
SDC 5.3 clock limitations.

Table 3 displays the proposed HMAC-
SHA-256 design and other publications 
utilising HMAC on various FPGA family 
devices. HMAC-SHA-256 was successfully 
designed using Altera Quartus II 15.0. 
ModelSim-Altera 10.3d was used for 
functional and timing simulation to validate 

Figure 8. Maximum clock frequency (FMax) of HMAC-SHA-256

Figure 6. Simulation waveform of SHA-256 design

Figure 7. HMAC calculation value of SHA-256 
design with specific key
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the output results. The maximum frequency of the HMAC-SHA-256 design increases 
dramatically on the Arria II GX with 3953 LUT and 2714 total registers, as shown in Table 
3. Based on these findings, synthesis and implementation on Arria II GX give fast speed 
with a maximum frequency of 195.16 MHz compared to other HMAC publications utilising 
various hash functions on FPGA family device types. Furthermore, with the assistance 
of Altera Quartus II and TimeQuest Timing Analyser advisors, HMAC-SHA-256 design 
results are improved (https://www.altera.com/en_US/pdfs/literature/ug/ug_tq_tutorial.pdf). 
By applying SDC clock constraint 5.3 to the HMAC-SHA-256 design on Arria II GX, 
the maximum frequency of the design can be met under stable setup and hold conditions. 
Thus, this study proposed a high-performance and error-free HMAC-SHA-256 design 
with appropriate FPGA devices and clock constraints that meet the design requirement.

CONCLUSION

The design of HMAC-SHA-256 was successful through the use and development of 
high-speed computing, which possessed a maximum frequency of 195.16 MHz. FPGA 

Table 3
FPGA-based implementation comparison of the previous HMAC design

Authors/year FPGA Device Design 
Maximum 
Frequency 

(MHz)

LUT/
CLB
/LE

Reg

Proposed Design Altera Arria II GX Proposed HMAC 
(SHA-256)

195.16 3953 2714

Kieu-Do-Nguyen et 
al. (2022)

Virtex 4/Virtex 5 HMAC (SHA-256) 188 1615 -

Pham et al. (2022) Virtex2 XC2VP20 SHA-256 165 3695 -
Rubayya and Resmi 
(2015)

Xilinx Device (no mention 
device name)

HMAC 
(SHA-256)

110.009 6861 -

Juliato and Gebotys 
(2011)

Altera Apex 20K, 
EP20K1000EBC652

HMAC (SHA-256) 35.55 9231 -

Juliato and Gebotys 
(2011)

Xilinx Virtex-E, 
XCV1600EBG1156

HMAC (SHA-256) 48.12 3463 -

Juliato and Gebotys 
(2011)

Xilinx Virtex-II, 
XCV2V4000BF957

HMAC (SHA-256) 59.66 3608 -

Khan et al. (2007) Xilinx XC2V4000 HMAC (MD5, SHA-1, 
RIPEMD-160)

43.47 7484 -

Yiakoumis et al. 
(2005)

Xilinx VirtexE-8 HMAC (MD5)
HMAC (SHA-1)

55 
111

686 -

Michail et al. (2004) Xilinx V3200efg1156 HMAC (SHA-1) 62.0 6011 -
Wang et al. (2004) EP2OKIOOOEBC652-IX HMAC (SHA-1/MD5) 22.67 - -
Selimis et al. (2003) V150bg352 HMAC (SHA-1) 82 1018 -
McLoone and 
McCanny (2002)

Xilinx XCV1000E HMAC (SHA-1) 50 7247 -
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implementation on the Arria II GX can offer great speed. Moreover, the design can be 
significantly enhanced with the assistance of advisor Altera Quartus II. Furthermore, 
providing the design with the proper SDC clock constraints will allow the TimeQuest 
timing analyser to meet the time requirements.
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